Lecture 7: More on $SU(3)_{flavor}$

- Review from Last Time
- SU(2) and SU(3): Group Theory and Quark Model Interpretation
- The Meson Multiplets
- The Baryon Multiplets
- Antiparticles
- Fermi Statistics and the Need for Color?
- SU(3) Breaking and Mass Formulaes
- Magnetic Moments

Review From Last Time

- Strongly interacting particles (hadrons) classified as spin-1/2 baryons and integer spin mesons
 - – ∃ families of particles with same spin and parity
 and similar masses, but with different charges.
 - Strong interactions of particles within a family are the same
 - Eg, protons and neutrons have very similar masses and see same nuclear interactions
- Postulate that particles within a family are related by a symmetry property
 - Isospin
 - Once strangeness discovered, extend to SU(3)

Charge: Determined from Strangeness and I_Z

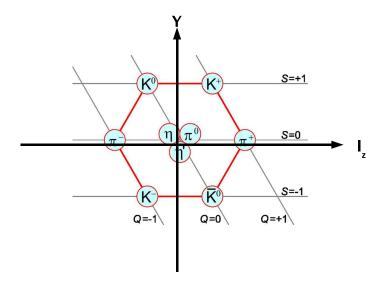
- We've already seen that within an isospin multiplet, different I_z have different charge
- Can generalize this observation for all light quark (u,d,s) multiplets:

$$Q = I_z + \frac{B+S}{2}$$

Define hypercharge $Y \equiv B + S$

- This is called the Gell Mann-Nishijima Eq
- Note: Because Q is determined from I_3 , EM interactions cannot conserve isospin, but do conserve I_3
 - This is analogous to the Zeeman effect in atomic physics where a B field in z direction destroys conservation of angular momentum, but leaves J_z as a good quantum number
- ullet EM coupling $\sim 1\%$ so effects of isospin non-conservation are small and can be treated as perturbative correction to strong interaction

Group Theory Interpretation



- ullet Describe particles with same spin, parity and charge congugation symmetry as members of a multiplet with different I_z and Y
- Will define (next 2 pages) raising and lowering operators to navigate around the multiplet
- Gell Man and Zweig suggested that patterns of multiplets could be explained if all hadrons were made of quarks
 - Mesons: $q\overline{q}$ $3 \otimes \overline{3} = 1 \oplus 8$ - Baryons: qqq $3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 10$
- In those days, 3 flavors (extension to 6 discussed later)

Introduction to Group Theory (via SU(2))

- Let's start by reviewing SU(2) Isospin
- Fundamental representation: a doublet

$$\chi = \begin{pmatrix} u \\ d \end{pmatrix} \quad \text{so} \quad u = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad d = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 Define rotation in isospin space in terms of infinitesmal generators of the rotations

$$au_1 = \left(egin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}
ight), \; au_2 = \left(egin{array}{cc} 0 & -i \\ i & 0 \end{array}
ight), \; au_3 = \left(egin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}
ight)$$

ullet The au matrices satisfy commutation relations

$$\left[\frac{1}{2}\tau_i, \frac{1}{2}\tau_j\right] = i \, \frac{1}{2}\epsilon_{ijk}\tau_k$$

These commutation relations define the SU(2) algebra

- We can have higher representations of SU(2): $N \times N$ matrices with N = 2I + 1
- ullet Also, there is an operator that commutes with all the au's:

$$I^2 = (\frac{1}{2}\vec{\tau})^2 = \frac{1}{4}\Sigma_i \ \tau_i^2$$

and there are raising and lowering operators

$$\tau_{\pm} = \frac{1}{2}(\tau_1 \pm i\tau_2)$$

Extension to SU(3))

 SU(3): All unitary transformations on 3 component complex vectors without the overall phase rotation (U(1))

$$U^{\dagger}U = UU^{\dagger} = 1$$
 det $U = 1$
$$U = exp[i \sum_{a=1}^{8} \lambda_a \theta_a / 2]$$

ullet The fundamental representation of SU(3) are 3×3 matrices

$$\lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \qquad \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Commutation relations:

$$\left[\frac{\lambda_a}{2},\frac{\lambda_b}{2}\right]=if_{abc}\frac{\lambda_c}{2}$$

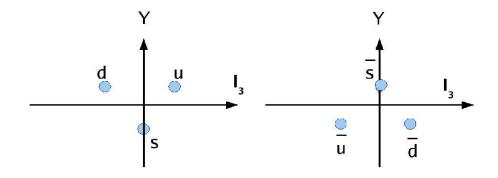
where $f_{123}=1$, $f_{147}=f_{246}=f_{257}=f_{345}=\frac{1}{2}$, $f_{156}=f_{367}=-\frac{1}{2}$ and $f_{458}=f_{678}=\sqrt{3}/2$.

SU(3) Raising and Lowering Operators

• SU(3) contains 3 SU(2) subgroups embedded in it

Isospin:
$$F_1$$
 F_2 F_3
U - spin: F_6 F_7 $\sqrt{3}F_8 - F_3$
V - spin: F_4 F_5 $\sqrt{3}F_8 + F_3$

- For each SU(2) subgroup we can form the usual raising and lowering operators
- Any two of the three subgroups are enough to navigate through all the members of the multiplet
- Fundamental representation: A triplet



• Define group structure of the state by starting at one corner and using raising and lowering operators

$$(V_{-})^{p+1}\phi_{max} = 0$$
$$(I_{-})^{1+1}\phi_{max} = 0$$
$$\text{structure}: (p,q)$$

 \bullet So quarks (u,d,s) have $p=1,\ q=0$ while antiquarks $(\overline{u},\overline{d},\overline{s})$ have $p=0,\ q=1$

Combining SU(3) states (2 quarks)

• Combining two SU(3) objects gives $3 \times 3 = 9$ possible states

$$uu$$

$$\frac{1}{\sqrt{2}}(ud + du) \qquad \frac{1}{\sqrt{2}}(ud - du)$$

$$dd$$

$$\frac{1}{\sqrt{2}}(us + su) \qquad \frac{1}{\sqrt{2}}(us - su)$$

$$ss$$

$$\frac{1}{\sqrt{2}}(ds + sd) \qquad \frac{1}{\sqrt{2}}(ds - sd)$$

$$\mathbf{6} \qquad \mathbf{3}$$

$$3 \otimes 3 \qquad = \qquad 6 \oplus \overline{3}$$

• We know that the triplet is a $\overline{3}$ from its I_3 and Y:

Combining SU(3) states (a 3rd quark)

- $3 \otimes 3 \otimes 3 = 3 \otimes (6 \oplus \overline{3}) = 10_s \oplus 8_{M,S} \oplus 8_{M,A} \oplus 1$
- Start with the fully symmetric part of the 6:

$$\begin{array}{c} uuu & 3 \text{ such states} \\ \frac{1}{\sqrt{3}}(ddu+udd+dud) & 6 \text{ such states} \\ \frac{1}{\sqrt{6}}(dsu+uds+sud+sdu+dus+usd) & 1 \text{ such state} \end{array}$$

Ten states that are fully symmetric

• Now, the mixed symmetry part of the 6:

$$\frac{1}{\sqrt{6}}\left[(ud+du)u-2uud\right]$$
 8 such states

Eight states like this

• Now on to the $\overline{3}$:

$$\frac{1}{\sqrt{6}}\left[(ud-du)s+(usd-dsu)+(du-ud)s\right]$$
 8 such states

Eight states like this

• Final state, totally antisymmetric

Combining SU(3) states $(q\overline{q})$

- Start with $\pi^+ = u \; \overline{d}$
- Using:

$$I_{-}|\overline{u}\rangle = -|\overline{d}\rangle$$

 $I_{-}|\overline{d}\rangle = +|\overline{u}\rangle$

We find:

$$I_{-} |u\overline{d}\rangle = -|uu\rangle + |dd\rangle$$
$$= \sqrt{2} |I = 1 I_{3} = 0\rangle$$
$$\pi^{0} = \frac{1}{\sqrt{2}} (|d\overline{d}\rangle - |u\overline{u}\rangle)$$

Doing this again: $\pi^- = d \, \overline{u}$

• Now add strange quarks: 4 combinations

$$u\overline{s}$$
 $d\overline{s}$ $\overline{u}s$ $\overline{d}s$ K^+ K^0 $K^ \overline{K^0}$

• One missing combination:

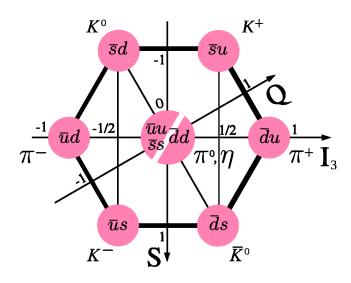
$$(d\overline{d} + u\overline{u} - 2s\overline{s})/\sqrt{6} \equiv \eta'$$

These 8 states are called an octet

 One additional independent combination: the singlet state

$$(u\overline{u} + d\overline{d} + s\overline{s})/\sqrt{6}$$

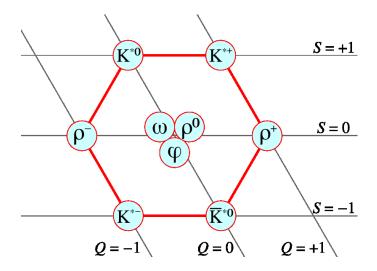
Pseudoscalar Mesons (0⁻)



Ι	I_3	\mathbf{S}	Meson	Combo	Decay	Mass (MeV)
1	1	0	π^+	$u\overline{d}$	$\mu^+ \nu$	140
1	0	0	π^0	$\frac{1}{2}(d\overline{d} - u\overline{u})$	$\gamma\gamma$	135
1	-1	0	π^-	$d\overline{u}$	$\mu^-\overline{\nu}$	140
$\frac{1}{2}$	$\frac{1}{2}$	+1	K^+	$u\overline{s}$	$\mu^+ \nu$	494
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$-\frac{1}{2}$	+1	K^0	$d\overline{s}$	$\pi^+\pi^-$	498
$\frac{1}{2}$	$\frac{1}{2}$	-1	K^{-}	$\overline{u}s$	$\mu^-\overline{\nu}$	494
$\frac{1}{2}$	$-\frac{1}{2}$	-1	$\overline{K^0}$	$\overline{d}s$	$\pi^+\pi^-$	498
0	0	0	η_8	$\frac{1}{\sqrt{6}}(d\overline{d} + u\overline{u} - 2s\overline{s})$	see below	
0	0	0	η_0	$\frac{1}{\sqrt{3}}(d\overline{d} + u\overline{u} + s\overline{s})$		

- Mass of strange mesons larger than non-strange by 150 MeV
 - Strange quark has a larger mass than up and down
 - Leads to SU(3) breaking in \boldsymbol{H}
- The η_8 and η_0 are degenerate if SU(3) were a perfect symmetry
 - Degenerate Pertubation Theory: The states can mix. Physical states are:
 - * η : Mass=549 Decay: $\eta \to 2\gamma$
 - * η' : Mass=958 Decays: $\eta' \to \eta \pi \pi$ or $\gamma \gamma$

Vector Mesons (1⁻)

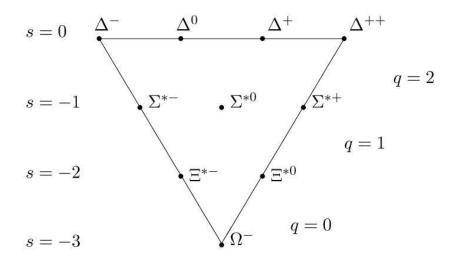


I	I_3	\mathbf{S}	Meson	Combo	Decay	Mass (MeV)
1	1	0	ρ^+	$u\overline{d}$	$\pi^+\pi^0$	776
1	0	0	$ ho^0$	$\frac{1}{2}(d\overline{d} - u\overline{u})$	$\pi^+\pi^-$	776
1	-1	0	$ ho^-$	$d\overline{u}$	$\pi^-\pi^0$	776
$\frac{1}{2}$	$\frac{1}{2}$	+1	K^{*+}	$u\overline{s}$	$K\pi$	892
$\frac{1}{2}$	$-\frac{1}{2}$	+1	K^{*0}	$d\overline{s}$	$K\pi$	892
$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{1}{2}$	-1	K^{*-}	$\overline{u}s$	$\overline{K}\pi$	892
$\frac{1}{2}$	$-\frac{1}{2}$	-1	$\overline{K^{*0}}$	$\overline{d}s$	$\overline{K}\pi$	892
0	0	0	ω	$\frac{1}{2}(u\overline{+}d\overline{d})$	783	3π
0	0	0	ϕ	$s\overline{s}$	1019	$K\overline{K}$

Last two states are given <u>after</u> the octet-singlet mixing. See the previous page for the SU(3) symmetric wave functions

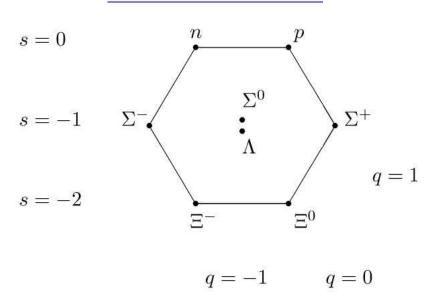
- Unlike the pseudoscalars which decay weakly, the vectors can decay strongly
- The octet-nonet mixing is maximal in the case of the vector mesons
 - The ϕ is all $s\overline{s}$ while the ω is all $u\overline{u}$ and $d\overline{d}$

Baryon Decouplet $(\frac{3}{2}^{-})$



$$q = -1$$

Baryon Octet $(\frac{1}{2}^-)$



Comments on Antiparticles

- For mesons, particle and antiparticle are in the same multiplet
 - The multiplet is called "self-charge conjugate"
- For baryons, the antiparticles are in different multiplets
 - $\textbf{-}\ 10\Rightarrow\overline{10}$
 - $-8 \Rightarrow \overline{8}$

A Comment on Fermi Statistics: Why Color

- Imposition of Fermi Statistics on Baryon States
 - $-\Delta^{++}=uu$, spin=3/2, s-wave: These are all symmetric under interchange
 - Need another degree of freedom to antisymmetrize (must haver at least 3 possible states, since we are antisymmetrizing 3 objects)
- We'll see the week after next, that the QCD Lagrangian is based on an $SU(3)_{color}$ interaction
 - Gluons are color octets
 - Observable hadrons are color singlets
 - The color singlet states are anti-symmetric under color exchange
 - * This solves the Fermi statistics problem

SU(3) Breaking and Mass Relations

- In SU(3) symmetric world, all members of a multiplet should have the same mass
 - Value of mass depends on binding energy: cannot calculate this since perturbative non-relativistic calculations not possible for low energy QCD
- Several reasons why the physical masses of the hadrons in a multiple are different
 - Difference in quark masses
 - * $m_d > m_u$ by a few MeV, m_s heavier by ~ 175 MeV
 - Coulomb energy diffference associated with the electrical energy between pairs of quarks
 - * Of order e^2/R_0 . With $R_0 \sim 0.8$ fm, this ~ 2 MeV
 - Magnetic energy differences associated with the magnetic moments of the quarks (hyperfine interaction)
 - * Standard EM hyperfine splitting:

$$\Delta E = \vec{\mu} \cdot \vec{B} = \frac{2}{3} \vec{\mu}_i \cdot \vec{\mu}_j |\psi(0)|^2 = \frac{2\pi}{3} \frac{\alpha}{m_i m_j} \vec{\sigma}_i \cdot \vec{\sigma}_j |\psi(0)|^2 \quad (\text{a few MeV})$$

* Color hyperfine splitting has same basic structure except α is replaced with α_s and the numerical factor in front is different (due to strong interaction color factors)

$$-\alpha \to \begin{cases} -\frac{4}{3}\alpha_s & \text{for } q\overline{q} \\ -\frac{2}{3}\alpha_s & \text{for } qqq \end{cases}$$